Logiweb(TM)

Logiweb aspects of Lcurry in pyk

Up Help

The "pyk" aspect

Define pyk of Lcurry as "Lcurry" end define

The "proof/kg" aspect

define proof of Lcurry as \ p . \ c . taceval ( quote Line L01 : Premise >> Prop ; All #h : All #x : All #y : Line L03 : Premise >> { #h and #x } imply #y ; Line L04 : Def ponens L03 >> { not { #h imply not #x } } imply #y ; Line L05 : Mend1.11b >> #y imply not not #y ; Line L06 : { Mend1.47b ponens L04 } ponens L05 >> { not { #h imply not #x } } imply not not #y ; Line L07 : { MP ponens Mend1.47d } ponens L06 >> { not #y } imply { #h imply not #x } ; Line L08 : Mend1.47c ponens L07 >> #h imply { { not #y } imply not #x } ; Line L09 : Mend1.47d >> { { not #y } imply not #x } imply { #x imply #y } ; { { { Mend1.47b ponens L08 } ponens L09 } conclude { #h imply { #x imply #y } } } end quote , tacstate0 , c ) end define

The "unitac/kg" aspect

define unitac of Lcurry as \ u . unitac-lemma ( u ) end define

The "statement/kg" aspect

define statement of Lcurry as Prop infer All #h : All #x : All #y : { { { #h and #x } imply #y } infer { #h imply { #x imply #y } } } end define

The pyk compiler, version 0.1.9 by Klaus Grue,
GRD-2007-07-12.UTC:20:13:13.678589 = MJD-54293.TAI:20:13:46.678589 = LGT-4690988026678589e-6