Logiweb(TM)

Logiweb aspects of tactic-dummyhyp ( " ) in pyk

Up Help

The "pyk" aspect

Define pyk of tactic-dummyhyp ( asterisk ) as "tactic-dummyhyp ( "! )" end define

The "value" aspect

define value of tactic-dummyhyp ( u ) as norm { u is val : LET u BE { asterisk IN LET { if asterisk atom then asterisk else { asterisk head } } :: { { if asterisk atom then asterisk else { asterisk tail } } :: true } BE { asterisk prime IN LET asterisk prime head BE { asterisk IN LET asterisk prime tail BE { asterisk prime IN LET asterisk BE { t IN LET asterisk prime head BE { asterisk IN LET asterisk prime tail BE { asterisk prime IN LET { if asterisk atom then asterisk else { asterisk head } } :: { { if asterisk atom then asterisk else { asterisk tail } } :: true } BE { asterisk prime prime IN LET asterisk prime prime head BE { asterisk IN LET asterisk prime prime tail BE { asterisk prime prime IN LET asterisk BE { s IN LET asterisk prime prime head BE { asterisk IN LET asterisk prime prime tail BE { asterisk prime prime IN LET { if asterisk atom then asterisk else { asterisk head } } :: { { if asterisk atom then asterisk else { asterisk tail } } :: true } BE { asterisk prime prime prime IN LET asterisk prime prime prime head BE { asterisk IN LET asterisk prime prime prime tail BE { asterisk prime prime prime IN LET asterisk BE { c IN LET asterisk prime prime prime head BE { asterisk IN LET asterisk prime prime prime tail BE { asterisk prime prime prime IN LET t BE { asterisk IN LET { if asterisk atom then asterisk else { asterisk head } } :: { { if asterisk atom then asterisk else { asterisk tail } } :: true } BE { asterisk prime IN LET asterisk prime head BE { asterisk IN LET asterisk prime tail BE { asterisk prime IN LET asterisk prime head BE { asterisk IN LET asterisk prime tail BE { asterisk prime IN LET { if asterisk atom then asterisk else { asterisk head } } :: { { if asterisk atom then asterisk else { asterisk tail } } :: true } BE { asterisk prime prime IN LET asterisk prime prime head BE { asterisk IN LET asterisk prime prime tail BE { asterisk prime prime IN LET asterisk prime prime head BE { asterisk IN LET asterisk prime prime tail BE { asterisk prime prime IN LET { if asterisk atom then asterisk else { asterisk head } } :: { { if asterisk atom then asterisk else { asterisk tail } } :: true } BE { asterisk prime prime prime IN LET asterisk prime prime prime head BE { asterisk IN LET asterisk prime prime prime tail BE { asterisk prime prime prime IN LET asterisk BE { n IN LET asterisk prime prime prime head BE { asterisk IN LET asterisk prime prime prime tail BE { asterisk prime prime prime IN LET s [[ hook-hyp ]] BE { asterisk IN LET asterisk BE { h IN if .not. h then taceval ( n , s , c ) else LET tactic-first-hyp ( true :: { true :: { quote tt end quote :: { n :: <<>> } } } , s , c ) BE { asterisk IN LET asterisk BE { s IN LET s [[ hook-res ]] second BE { asterisk IN LET asterisk BE { r IN LET s [[ hook-arg ]] BE { asterisk IN LET asterisk BE { a IN LET make-root ( a , quote a unquote ;; { { LElimHyp Init Deref Ponens at { r unquote } } Ponens } end quote ) :: { a :: { { make-root ( a , quote { LElimHyp Init Deref Ponens at { r unquote } } Ponens end quote ) :: { { make-root ( a , quote LElimHyp Init Deref Ponens at { r unquote } end quote ) :: { { make-root ( a , quote LElimHyp Init Deref Ponens end quote ) :: { { make-root ( a , quote LElimHyp Init Deref end quote ) :: { { make-root ( a , quote LElimHyp Init end quote ) :: { { make-root ( a , quote LElimHyp end quote ) :: true } :: true } } :: true } } :: true } } :: { r :: true } } } :: true } } :: true } } BE { asterisk IN LET asterisk BE { a IN { s [[ hook-arg -> a ]] [[ hook-res -> r second ]] } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } end define

The pyk compiler, version 0.1.9 by Klaus Grue,
GRD-2007-07-12.UTC:20:13:13.678589 = MJD-54293.TAI:20:13:46.678589 = LGT-4690988026678589e-6