Logiweb(TM)

Logiweb aspects of tactic-FOL ( " ) in pyk

Up Help

The "pyk" aspect

Define pyk of tactic-FOL ( asterisk ) as "tactic-FOL ( "! )" end define

The "value" aspect

define value of tactic-FOL ( u ) as norm { u is val : LET u BE { asterisk IN LET { if asterisk atom then asterisk else { asterisk head } } :: { { if asterisk atom then asterisk else { asterisk tail } } :: true } BE { asterisk prime IN LET asterisk prime head BE { asterisk IN LET asterisk prime tail BE { asterisk prime IN LET asterisk BE { t IN LET asterisk prime head BE { asterisk IN LET asterisk prime tail BE { asterisk prime IN LET { if asterisk atom then asterisk else { asterisk head } } :: { { if asterisk atom then asterisk else { asterisk tail } } :: true } BE { asterisk prime prime IN LET asterisk prime prime head BE { asterisk IN LET asterisk prime prime tail BE { asterisk prime prime IN LET asterisk BE { s IN LET asterisk prime prime head BE { asterisk IN LET asterisk prime prime tail BE { asterisk prime prime IN LET { if asterisk atom then asterisk else { asterisk head } } :: { { if asterisk atom then asterisk else { asterisk tail } } :: true } BE { asterisk prime prime prime IN LET asterisk prime prime prime head BE { asterisk IN LET asterisk prime prime prime tail BE { asterisk prime prime prime IN LET asterisk BE { c IN LET asterisk prime prime prime head BE { asterisk IN LET asterisk prime prime prime tail BE { asterisk prime prime prime IN LET t BE { asterisk IN LET { if asterisk atom then asterisk else { asterisk head } } :: { { if asterisk atom then asterisk else { asterisk tail } } :: true } BE { asterisk prime IN LET asterisk prime head BE { asterisk IN LET asterisk prime tail BE { asterisk prime IN LET asterisk prime head BE { asterisk IN LET asterisk prime tail BE { asterisk prime IN LET { if asterisk atom then asterisk else { asterisk head } } :: { { if asterisk atom then asterisk else { asterisk tail } } :: true } BE { asterisk prime prime IN LET asterisk prime prime head BE { asterisk IN LET asterisk prime prime tail BE { asterisk prime prime IN LET asterisk BE { x IN LET asterisk prime prime head BE { asterisk IN LET asterisk prime prime tail BE { asterisk prime prime IN LET { if asterisk atom then asterisk else { asterisk head } } :: { { if asterisk atom then asterisk else { asterisk tail } } :: true } BE { asterisk prime prime prime IN LET asterisk prime prime prime head BE { asterisk IN LET asterisk prime prime prime tail BE { asterisk prime prime prime IN LET asterisk BE { y IN LET asterisk prime prime prime head BE { asterisk IN LET asterisk prime prime prime tail BE { asterisk prime prime prime IN LET make-root ( t , quote x unquote infer { { Prop Rule conclude Prop } ;; { { FOL Rule conclude FOL } ;; tactic-ded ( true , y unquote ) } } end quote ) :: { x :: { { make-root ( t , quote { Prop Rule conclude Prop } ;; { { FOL Rule conclude FOL } ;; tactic-ded ( true , y unquote ) } end quote ) :: { { make-root ( t , quote Prop Rule conclude Prop end quote ) :: { { make-root ( t , quote Prop Rule end quote ) :: { { make-root ( t , quote Prop end quote ) :: true } :: true } } :: { { make-root ( t , quote Prop end quote ) :: true } :: true } } } :: { { make-root ( t , quote { FOL Rule conclude FOL } ;; tactic-ded ( true , y unquote ) end quote ) :: { { make-root ( t , quote FOL Rule conclude FOL end quote ) :: { { make-root ( t , quote FOL Rule end quote ) :: { { make-root ( t , quote FOL end quote ) :: true } :: true } } :: { { make-root ( t , quote FOL end quote ) :: true } :: true } } } :: { { make-root ( t , quote tactic-ded ( true , y unquote ) end quote ) :: { { make-root ( t , quote true end quote ) :: true } :: { y :: true } } } :: true } } } :: true } } } :: true } } BE { asterisk IN LET asterisk BE { t IN LET taceval ( t , s , c ) BE { asterisk IN LET asterisk BE { r IN r } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } } end define

The pyk compiler, version 0.1.9 by Klaus Grue,
GRD-2007-07-12.UTC:20:13:13.678589 = MJD-54293.TAI:20:13:46.678589 = LGT-4690988026678589e-6